Controlling the lithiation-induced strain and charging rate in nanowire electrodes by coating.

نویسندگان

  • Li Qiang Zhang
  • Xiao Hua Liu
  • Yang Liu
  • Shan Huang
  • Ting Zhu
  • Liangjin Gui
  • Scott X Mao
  • Zhi Zhen Ye
  • Chong Min Wang
  • John P Sullivan
  • Jian Yu Huang
چکیده

The advanced battery system is critically important for a wide range of applications, from portable electronics to electric vehicles. Lithium ion batteries (LIBs) are presently the best performing ones, but they cannot meet requirements for more demanding applications due to limitations in capacity, charging rate, and cyclability. One leading cause of those limitations is the lithiation-induced strain (LIS) in electrodes that can result in high stress, fracture, and capacity loss. Here we report that, by utilizing the coating strategy, both the charging rate and LIS of SnO(2) nanowire electrodes can be altered dramatically. The SnO(2) nanowires coated with carbon, aluminum, or copper can be charged about 10 times faster than the noncoated ones. Intriguingly, the radial expansion of the coated nanowires was completely suppressed, resulting in enormously reduced tensile stress at the reaction front, as evidenced by the lack of formation of dislocations. These improvements are attributed to the effective electronic conduction and mechanical confinement of the coatings. Our work demonstrates that nanoengineering the coating enables the simultaneous control of electrical and mechanical behaviors of electrodes, pointing to a promising route for building better LIBs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafast electrochemical lithiation of individual Si nanowire anodes.

Using advanced in situ transmission electron microscopy, we show that the addition of a carbon coating combined with heavy doping leads to record-high charging rates in silicon nanowires. The carbon coating and phosphorus doping each resulted in a 2 to 3 orders of magnitude increase in electrical conductivity of the nanowires that, in turn, resulted in a 1 order of magnitude increase in chargin...

متن کامل

Deformation and fracture of silicon electrodes in lithium-ion batteries

We have performed a number of experiments to examine the mechanical behavior of amorphous silicon electrodes of lithium-ion batteries. In particular, we have measured the fracture energy of lithiated silicon thin-fi lm electrodes as a function of lithium concentration. The fracture energy is found to be similar to that of pure silicon and essentially independent of the concentration of lithium....

متن کامل

Variation of stress with charging rate due to strain-rate sensitivity of silicon electrodes of Li-ion batteries

Increasing the charging rate results in an increase in stresses measured in aLixSi. Observations indicate that ratesensitive plasticity occurs in a-LixSi. A model of concurrent lithiation and rate-sensitive plasticity is developed. Rate-sensitive material parameters are quantified for a-LixSi. Results have important ramifications for rate-capabilities of silicon

متن کامل

In situ observation of the electrochemical lithiation of a single SnO₂ nanowire electrode.

We report the creation of a nanoscale electrochemical device inside a transmission electron microscope--consisting of a single tin dioxide (SnO(2)) nanowire anode, an ionic liquid electrolyte, and a bulk lithium cobalt dioxide (LiCoO(2)) cathode--and the in situ observation of the lithiation of the SnO(2) nanowire during electrochemical charging. Upon charging, a reaction front propagated progr...

متن کامل

Tailoring lithiation behavior by interface and bandgap engineering at the nanoscale.

Controlling the transport of lithium (Li) ions and their reaction with electrodes is central in the design of Li-ion batteries for achieving high capacity, high rate, and long lifetime. The flexibility in composition and structure enabled by tailoring electrodes at the nanoscale could drastically change the ionic transport and help meet new levels of Li-ion battery performance. Here, we demonst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS nano

دوره 5 6  شماره 

صفحات  -

تاریخ انتشار 2011